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EXECUTIVE SUMMARY 

Curb ramps are an essential component of safe, accessible, and efficient mobility for all 

transportation users. To make sure that curb ramps can function as intended, their design and 

construction should meet Americans with Disabilities Act (ADA) standards and guidelines, 

given that those with disabilities are most adversely affected by improper curb ramp 

construction. Missing curb ramps, as well as those that do not meet the requirements, may cause 

accessibility barriers for persons with disabilities. One of the primary challenges that 

transportation agencies face is that assessing the quality of curb ramps is time-consuming and 

labor intensive, especially because every corner at an intersection includes multiple curb ramps.  

Mobile lidar is a remote sensing technique that has been adopted by several 

transportation agencies to regularly collect dense 3D point cloud with high accuracy and 

efficiency for a wide variety of applications (e.g., asset management, civil design, etc.). 

Leveraging mobile lidar technology can substantially improve the conventional procedure of 

asset management. However, there is still a need for automatic tools to process the mobile lidar 

data effectively and efficiently.  

In this project, the research team developed an automatic workflow procedure to extract 

and localize curb ramps within a large data point cloud. The proposed approach consists of three 

steps: ground filtering, curb detection, and curb ramp localization. It was evaluated both 

qualitatively and quantitatively with a mobile lidar data set. The recall, precision, and F-1 scores 

were all 72.4 percent.  The proposed approach can be potentially used for further analysis, such 

as feature characterization and point cloud classification of other features. 
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CHAPTER 1 INTRODUCTION 

Curb ramps that meet Americans with Disability Act (ADA) requirements are an 

essential part of a safe and efficient transportation network that needs to be inclusive for persons 

with disabilities. To make sure that curb ramps can function, design and construction should 

follow ADA standards and guidelines. Unfortunately, there are many instances where curb ramps 

fail to meet ADA standards. For example, an audit completed in 2018 (revised in 2019) by the 

Oregon Department of Transportation (ODOT) showed that only 3 percent of the curb ramps on 

state highways in Oregon were rated as “good,” while curb ramps were missing in 20 percent of 

cases (figure 1.1). Curb ramps that are missing or in a poor functional condition may cause 

accessibility barriers for persons with disabilities.  

One of the primary challenges that transportation agencies face is that assessing the 

quality of curb ramps is usually time-consuming and labor intensive, especially because every 

street corner at an intersection includes multiple curb ramps. Consequently, it is unrealistic to 

perform a highly accurate survey with all the necessary equipment and logistics. Instead, taking 

slope measurement as an example, a carpenter’s level and tape are usually used. Hence, accuracy 

and reliability can be compromised with a limited number of samples and unpredictable human 

errors. 
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Figure 1-1. An example of the current ADA ramp inventory on Oregon state highways on 
ODOT TransGIS [2], where “Poor” means a curb ramp does not meet one or more ADA 

guidelines. 
 

Mobile light detection and ranging (lidar) is a remote sensing technique that has been 

adopted by several transportation agencies to regularly collect dense 3D point cloud data with 

greater accuracy and efficiency for a wide variety of applications (e.g., asset management, civil 

design, etc.). With the detailed 3D geometric information provided by mobile lidar data, various 

characteristics and metrics can be extracted from a point cloud and used to examine whether a 

curb ramp is ADA compliant (figure 1.2). Because each point in the mobile lidar data is 

georeferenced, the result of the assessment can be easily added or attached to the existing 

inventory. However, manually processing and cleaning the mobile lidar data to use them for curb 

ramp assessment can be tedious and time-consuming. Additionally, a more rigorous study needs 

to be conducted to evaluate the effectiveness and reliability of mobile lidar-based curb ramp 

assessment.  
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Figure 1-2. An example of mobile lidar data at an intersection including a curb ramp. 
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CHAPTER 2 LITERATURE REVIEW 

Lidar has been widely used in transportation. Olsen et al. (2013) introduced the main 

applications of lidar use in transportation asset management. They also pointed out that lidar has 

the benefit of offering faster data collection, better safety, and more convenience when the field 

area is hard to enter or includes potential safety hazards. However, there are a few challenges in 

using lidar. For example, in comparison with the high efficiency of lidar data collection, the 

efficiency of data processing is relatively low. There are four reasons. First, the volume of the 

data set is usually large, which slows down the speed of data processing. Second, most lidar data 

are processed manually, which can introduce human error. Third, data processing is time-

consuming. Last, the process is tedious, meaning that there are many repetitive steps during data 

processing. Some previous studies have focused on solving these issues. This section reviews 

and summarizes the technologies evaluated for curb ramp localization and curb ramp assessment 

in previous studies. 

Evaluating the ADA compliance of curb ramps can be very labor intensive and time-

consuming. Because mobile lidar data can provide detailed 3D information accurately and 

efficiently, lidar has the potential to become a tool for automatic curb ramp evaluation. For 

example, Oh et.al (2018) proposed a method for automatically evaluating the ADA compliance 

of transportation infrastructure, including sidewalks and curb ramps, by using mobile laser 

scanning (MLS) and open source processing algorithms. They first acquired MLS data, and then 

the data were filtered. Then roads, sidewalks, and ramps were extracted by using plane normal 

vector information in the point cloud data. After that, key features including the slope, width, and 

length of each curb ramp were calculated in the point cloud data. Then they assessed sidewalk 

width, curb ramp cross slopes, and the connectivity with the roadway by comparing the key 

features from the MLS point cloud data with ground truth data that they acquired by using a 



 

6 

measuring tape. For a selected slope, the average difference was 0.22 percent between the MLS 

data and ground truth data. Other methods such as a surface profiler can also be used for curb 

ramp assessment. Loewenherz et al. (2010) developed a method for evaluating sidewalks and 

curb ramps by using an Ultra-Light Inertial Profiler set on a Segway machine. This method could 

collect more precise data than traditional measurements. The data collected with the surface 

profiler were compared with ground truth data that were acquired with a smart level.  

The research team performed a comprehensive review summarizing and analyzing the 

state of the art in object recognition, segmentation, and classification of mobile lidar data (Che et 

al., 2019). Many methods have been proposed and demonstrated to be able to extract or classify 

various objects, including roadways and curbs, that are related to curb ramps. Most recently, 

Romero et al., (2021) conducted a historical survey on road curb detection that reviewed and 

discussed a variety of road detection methods. Unfortunately, regarding curb ramps, very few 

studies have had success, so that gaps exist in information related to using lidar data for asset 

management and other applications.  

Hervieu & Soheilian (2013) presented a semi-automatic approach for extracting curb 

ramp data based on profile analysis perpendicular to the driving direction. Although the approach 

has been demonstrated to be effective, such a profile-based approach can detect only curb ramps 

facing the lidar trajectory. Some mobile lidar systems record video logs that can be associated 

with a lidar point cloud. Therefore, instead of using 3D point cloud data directly, Ai & Tsai 

(2016) took advantage of computer vision technologies to detect curb ramps and map the 

detection results to the 3D point cloud with an interactive approach. Later, Ai et al. (2019) 

adopted the computer vision approach developed by Hara et al. (2014) to recognize curb ramps 

from video logs and developed a manual curb ramp measurement tool for assessing their ADA 
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compliance. The experiment demonstrated that these approaches were effective and efficient in 

comparison with manual techniques, which can be tedious and time consuming. However, such 

approaches rely heavily on computer vision and machine learning techniques. As a result, their 

performance can be affected by a variety of factors, such as the number of training data sets, the 

quality of calibration between the cameras and lidar sensor, and other factors such as exposure 

settings and stitching quality. In addition, because the cameras and the lidar sensor do not 

necessarily capture the same objects simultaneously, a curb ramp occluded by a pedestrian or 

other moving objects can cause false detection results.  

In the research team’s previous work, a method to extract roadways and driveways was 

developed. In the study, Mo-Norvana segmentation (Che & Olsen, 2019) was applied to support 

ground filtering and the subsequent analysis. To detect the road surface, curbs and other 

obstacles were first extracted, followed by a simulation of a car moving on the ground. The 

driveways were also of interest because a vehicle would be able to gain access through them 

while the curb ramps would need to be eliminated (figure 2-1). By using the same concept, a 

similar approach should be able to extract curb ramps. However, this method was limited by the 

accuracy of the trajectory reconstruction, high sensitivity to noise, and certain types of mobile 

lidar systems.  
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(a) Road detection result. 

 
(b) GIS product and accuracy assessment. 

Figure 2-1. Performance of the road detection developed by the team in previous work 
(modified from Che et al.). 
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CHAPTER 3 METHODOLOGY 

3.1 Overview 

The research team first developed an automated workflow process to locate and orient the 

curb ramp from point cloud data. The process consists of three primary steps: (1) ground filtering 

to separate ground and non-ground points; (2) curb line detection that classifies the point cloud; 

and (3) curb ramp localization using the extracted curb lines. To characterize the curb ramp in 

terms of its running slope, cross slope, and flatness/smoothness/roughness, the research team 

also proposed several models that can simulate the slope measurement on a curb ramp.  

In another ongoing effort by the research team, Olsen et al. (2020) is investigating the 

accuracy of a variety of tools for assessing the ADA compliance of curb ramps, especially for 

slope measurements. During the project, a couple of lidar systems (Leica ScanStation P40 and 

Leica BLK360) were rigorously evaluated. The results showed that the accuracy of the terrestrial 

lidar system (Leica Scanstation P40) is on par with that of a smart level, a tool that is widely 

used by contractors and inspectors to measure different slopes on a sidewalk and curb ramp. 

Meanwhile, the BLK360 scanner cannot be reliably used for the same purpose primarily because 

of the precision and accuracy of the internal compensator. For the same reason, the mobile lidar 

system would not be sufficiently accurate for measuring the slope of curb ramps by itself. There 

are other metrics such as width of a curb ramp that can be accurately measured with mobile lidar 

data, although this has not been thoroughly tested and documented. The accuracy of the 

length/width measurement is a function of lidar sensor accuracy, inertial measurement unit 

(IMU) accuracy, and point cloud density, which is affected by range, incidence angle, and 

driving speed. Therefore, this project focused only on curb ramp localization.  
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3.2 Ground Filtering 

Ground filtering is a common step in point cloud data processing that separates ground 

and non-ground points. Depending on the circumstances and applications, the ground can be 

defined differently. For example, for mobile lidar data collected in an urban or suburban area, a 

lot of approaches have been developed to focus on extracting the road surface, while other 

approaches have a broader definition of the ground that includes the road surface, median, 

sidewalk, and other types of ground elements (Che et al., 2019). A curb ramp usually serves as a 

transitional space between the sidewalk and road surface, defined by its elevation change. As a 

result, in the proposed framework, a ground filter approach that could preserve the sidewalks was 

required because the sidewalk provides important context for identifying curb ramps. Recently, 

the research team proposed a novel ground filtering procedure, namely Vo-SmoG, that was 

demonstrated able to cope with different types of scenes and data sources (Che et al., 2021).  

The Vo-SmoG starts with organizing the point cloud data through a novel voxelization 

approach that preserves geometric information while reducing computational complexity. Then 

several filters are applied to remove a variety of non-ground points, including isolated 

points/clusters, points that have a relatively high elevation, and points associated with a drastic 

slope or elevation change. Then the remaining ground candidate points are grouped into 

segments to complete the global refinement that further improve the result. Finally, a proximity 

filter is applied to map the ground candidates back to the original point cloud data and label them 

following the American Society for Photogrammetry and Remote Sensing (ASPRS) Lidar Data 

(LAS) specification. Using the mobile lidar data in a suburban scene as an example (figure 3-1, 

figure 3-2), the Vo-SmoG is effective and efficient at labeling not only the road as ground, but 
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also other types of ground, including grass, gravel, sidewalks, driveways, and more. Such 

classified point cloud data will serve as the input for the subsequent steps.  

 

Figure 3-1. Original mobile lidar data 

 

Figure 3-2. Vo-SmoG ground filtering result in which ground points are in green and other are 
in blue. 
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3.3 Curb Detection 

By definition, a curb ramp is built at a certain location along the curb line to provide 

access from the sidewalk. Therefore, a more accurate curb detection process that provides more 

context can yield more robust curb ramp localization. The research team developed a curb 

detection approach that works with the point cloud in which the ground points have been 

classified (figure 3-3, figure 3-4). The proposed approach further classifies these input data by 

adding the class of curbs. There are four primary steps in the proposed method to detect and 

classify curbs: ground points refinement, curb candidate extraction, curb candidate clustering, 

and proximity mapping. 

 

Figure 3-3. The original mobile lidar data. 
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Figure 3-4. The classified point cloud from the Vo-SmoG ground filtering result. 

As shown in the example of the ground filtering result (figure 3-4), without extensive 

parameter fine-tuning, the Vo-SmoG can provide ambiguous results at the curb face, where some 

points lying on the curb face are classified as ground and others are not. The definition or 

assumption of the ground surface applied by most, if not all, of the existing ground filtering 

excludes the curb face, given that it is associated with a sudden elevation change as well as a 

near-horizontal normal vector. To avoid extensive parameter fine-tuning of the approaches that 

can handle such situations such as Vo-SmoG and to tackle other, existing classified point clouds 

that exclude the curb face from the definition of the ground surface, the research team proposed 

an approach to add curb face points back to the ground points. The proposed method first 

voxelizes the entire classified point cloud and extracts the ground points. The voxelization 

process can down-sample the data and reduce the computational complexity. Notice that the 

proposed voxelization does not necessarily organize the data into cubes with the same 
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dimensions in every direction. The vertical cell size is given a smaller value (e.g., 0.03 m / 1 

inch) than the horizontal cell size (e.g., 0.05 m / 2 inch) so that the sampling process provides a 

more precise representation of the curb as a result of better alignment with the point density of 

the mobile lidar point cloud. Such a down-sampled point cloud is used and analyzed until the last 

step maps the results to the full point cloud. To include the curb face points in the ground points, 

each non-ground point’s neighbor ground points are searched by using the voxel indices. Then 

each non-ground point is analyzed to examine whether its elevation is within the elevation range 

of the neighbor ground points. If the elevation of a non-ground point is between the maximum 

and minimum elevations of its neighbor ground points, then it is added to the ground points. As a 

result, the ground surface can include the curb face for further curb detection (figure 3-5).  

 

Figure 3-5. Refinement of the ground points. 

To detect curb lines from the ground points from the previous step, the proposed 

approach applies two filters to derive the initial curb candidates. First, the normal vector at each 

ground point is estimated, and a threshold is applied to the z component of the normal vector to 

eliminate the road surface, sidewalk, and other flatter surfaces. Note that the tolerance of the 

normal surface or slope should be loosely assigned because of the great uncertainty at the curb 

regarding a sudden normal change. In this project, a maximum slope of 20 degrees (~34 percent) 
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was used, which provided a sufficient buffer to filter the road and sidewalk surfaces while 

preserving the curb points. Then to further cope with false positive points in the result, a range of 

elevation change was used based on the general designed height of the curb, given uncertainty in 

the data. In this work, the height of a curb was defined to be between 0.03 m (1 inch) and 0.3 m 

(1 ft) to include the traffic lane separator curb that is usually significantly lower than the normal 

curb on the sidewalk or median (figure 3-6).  

 

Figure 3-6. Result of the preliminary curb candidate extraction. 

To this point, the proposed analysis mostly focused on local features and characteristics 

such as local slope and elevation change. However, relying only on local geometric attributes can 

lead to a lot of false positive cases for extracting curbs (figure 3.4). Therefore, the research team 

implemented a refinement method that clusters the curb candidate points into segments and 

applies a few constraints to clean up the result. To cluster the curb candidates into segments, the 

connected component is implemented by using the same voxelization settings that are utilized in 

the previous steps (figure 3-7). After the clustering, the size and linearity of each segment are 

examined. Most of the noise and clutter can be removed with a simple threshold for size or 

length for each segment to ensure that only a segment with a certain length can be considered as 

part of the curb lines. Then for linearity, the proposed approach utilizes principal component 
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analysis (PCA) to calculate the linearity at each point in a segment by using the following 

equation:  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝜆𝜆1 + 𝜆𝜆2
𝜆𝜆1

 

where 𝜆𝜆1 and 𝜆𝜆2 are the eigen vectors corresponding to the largest and second largest eigen 

values, respectively. 

In this work, the search radius was given as 0.5 m (20 inch) empirically while the 

minimum average linearity was set at 0.75. The reason that the average linearity is examined 

instead of the overall linearity of the entire segment is that using a localized PCA calculation can 

better cope with the curved part of a curb line (figure 3-8).  

 

Figure 3-7. The clustering result of the curb candidates in which each color represents a 
segment, while green points are the small segments that do not pass the tolerance of segment 

size. 
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Figure 3-8. The result after filtering of the curb segments using the criteria of size and linearity. 

 

The result of the clustering with additional segment/global criteria (figure 3-6) shows that 

the proposed approach is effective at preserving the curb lines with different shapes, heights, and 

lengths. However, note that the curb lines extracted at this stage are in a form of down-sampled 

point cloud. Although the down-sampled curb points include most of the key characteristics of 

the curb lines and can be used to generate vector or raster models for various applications such as 

asset management, such a process would inevitably cause loss of information and would be 

irreversible. In addition, from a data re-use and management point of view, keeping a separate 

sub-dataset with only one feature would substantially limit its value. Given these considerations, 

the research team further mapped this extraction result back to the original point cloud data with 

a proximity mapping process to provide maximum geometric details and context information for 

future re-use of the same data set for other features and applications (figure 3-9).  
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Figure 3-9. Result of proximity mapping of the curb extraction result in which the blue points 
represent non-ground, green represents ground, and red represents curbs. 

3.4 Curb Ramp Localization 

Once curb lines have been detected from the point cloud data, a curb ramp can be 

localized by detecting gaps between multiple curb segments with the following constraints. First, 

for each curb segment, other curb segments are searched within a given range of distances. Such 

distances can be also considered as the range of the width of a curb ramp, which was set at 1.5 m 

to 3.5 m in this work. The minimum width is slightly larger than that required for ADA 

compliance because while the curb height usually decreases gradually to the ground level and 

transit to the curb ramp, the proposed curb extraction based on change in elevation will not be 

able to capture the full extent of the curb line. On the other hand, although there is no limit to 

how wide a curb ramp can be, in general, curb ramps for pedestrians are significantly narrower 

than ramps that are part of a driveway. As a result, the maximum curb ramp width is used to 
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distinguish curb ramps from driveways and other gaps in curb ramps that will cover most cases. 

Moreover, the minimum and maximum widths for curb ramps can help the algorithm cope with 

over-segmentation of the curb lines due to noise, occlusions, and other factors in the curb 

detection process.  

Second, the location of the curb ramp should follow the trend of the curb lines associated 

with it. Thus, in the proposed algorithm, the trends of the curb lines on both sides of a curb ramp 

candidate are estimated by using PCA such that the deviation angle of these two curb line 

segments can be compared with a given threshold, which was set to be 25 degrees in this project. 

Once a curb ramp candidate meets the criteria of the gap width and curb line trend, then the 

centroid of its end points is marked as the location of the curb ramp and stored in a GIS 

geodatabase along with its orientation, which can potentially be used for spatial analysis and 

asset management. In addition, the ground points along the trend of the curb lines are labeled as 

curb ramps in the point cloud such that the classification can support further analysis and 

modeling. 
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CHAPTER 4 TEST RESULTS 

4.1 Overview 

To validate the ramp localization approach proposed in this project, the team tested the 

program with a data set collected by the Oregon Department of Transportation with a Leica 

Pegasus: Two mobile lidar system (figure 4-1 (a)). The driving speed of the data collection was 

about 25 mph, resulting in over 130 million points with spacings of about 0.05 m in the driving 

direction. Most of the area of interest along the highway was covered by two passes in the left 

lane of both directions. The following sections discuss evaluation and the results of the key steps 

of the proposed method.  

 

Figure 4-1. Overview of testing the mobile lidar data (a) and the curb detection (blue lines) and 
curb ramp (red dots) localization result (b). 

4.2 Test Results 

The point cloud was divided into trunks based on time stamps to make the data more 

manageable. The team took advantage of that data structure and performed ground filtering with 
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Vo-SmoG and applied the proposed curb detection approach to each trunk of data. There were 

two reasons for such a strategy:  

(1) The georeferencing precision between multiple passes could be 0.03 to 0.05 m, 

resulting in artifacts and errors for the algorithms when local geometric attributes 

were analyzed. Processing a single pass of an area could minimize the impact of 

georeferencing errors in the MLS system.  

(2) The computational performance was significantly higher when the data was broken 

into smaller pieces because of lower memory consumption and computational 

complexity.  

The parameters for the ground filtering considered the scene type, data resolution, data 

accuracy, and other factors (fable 4-1), while the parameters used for curb detection were based 

on the discussion in the previous section (3.2.2). The height range was 0.02 to 0.30 m; the 

maximum road surface slope was 20 degrees; the minimum linearity was 0.75; and the minimum 

length of a curb segment was 1.5 m. 

Once the ground surface and curb points have been identified in the MLS point cloud, the 

curb ramp could be extracted by searching for gaps between curb segments given the constraints 

of width and alignment. Because gaps between the detected curb segments could also result from 

occlusions due to moving objects or the limited field of view of the MLS system, the classified 

point clouds, including the ground and curb lines, were merged before  the curb ramp 

localization was run to prioritize the completeness of the curb detection to achieve a better and 

more robust curb extraction result. Notice that after the non-ground points had been removed, the 

data set was reduced to only about 32 million points, which was less than one quarter of the 
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original data. As a result, even extracting curb ramps from the merged data set would not be as 

time-consuming as in the ground filtering stage.  

Table 4-1. Parameters used for Vo-SmoG ground filtering. 

Parameter MLS 

VSGround 0.1 m 

VSSeed 30 m 

T∆Norm 15° 

TAdjust 0.03 m 

RSearch 0.3 m 

TSize 100 voxels 

 

As shown in the curb detection and curb ramp result (figure 4-1), the proposed method 

was effectively able to tackle curbs of different heights, shapes, and orientations, including the 

curbs of sidewalks and raised median and lane separator curbs, which are usually significantly 

lower than normal curbs. The output of the curb ramp localization was exported in two formats: 

(1) a list of the locations of the detected curb ramps and (2) a classified point cloud in which the 

ground points linked the curb segments associated with the detected curb ramps (figure 4-2 (a)). 

The first format can be directly imported into a geodatabase to store the locations and other 

attributes of curb ramps as a point feature. The latter format can add more information to the 

point cloud, which can support further classification and analysis. For example, because the curb 

lines are closed by the curb ramp points, the road surface is delineated by these curb lines and 

can be easily identified.  



 

24 

To further evaluate the performance of the curb ramp extraction, the research team 

manually extracted ground truth data and examined the result from the proposed workflow. In 

total, 29 curb ramps were spotted in the testing data; 21 were correctly detected and eight were 

falsely identified. In addition, eight curb ramps were missed by the program.  The recall, 

precision, and F1-scores were all 72.4 percent. It is worth pointing out that none of the driveways 

in the area was mislabeled as a curb ramp, which demonstrates the effectiveness of the criteria 

for the width range built into the program. 

It is also worth noting that errors were seen in the results, including both false negatives 

(e.g., the missing curb ramp in figure 4-2 (b)) and false positives (e.g., the misclassified curb 

ramp seen in figure 4-2 (c)). Most false identifications of curb ramps were caused by errors in 

curb detection propagated to the curb ramp extraction analysis.  

As the point density on the curb face decreased with the increasing ranges and angles of 

incidence, it became more challenging to detect curb ramps in such areas. Moreover, the mobile 

lidar system used in the test was equipped with a single 2D profiler mounted at a 30-degree angle 

in relation to the driving direction to prioritize the surface facing the vehicle on the right side. As 

a result, curb faces with a certain orientation (along the driving direction on the left or opposite 

of the driving direction on the right side) were poorly covered by the system, which further 

caused the errors in curb detection and curb ramp localization (e.g., figure 4-2 (b)). Fortunately, 

this challenge can potentially be overcome in two ways: 1) add a second profiler or adjust the 

angle of the profiler to improve the coverage of the curbs and curb ramps in each individual pass 

and 2) cover each leg of the intersection to capture the curb lines in each direction.  

In addition to curbs, there are other common objects in a street scene that are similar to 

curbs in terms of their geometric characteristics, such as stair steps and parking blocks (Figure 4-
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2 (c)). In most cases, these objects are significantly shorter than curb lines. However, as 

discussed in the previous section, the curb line is not necessarily covered to its full or a 

substantial extent. Therefore, the potential solution to cope with such issues would be to consider 

more context and semantic information. For example, given the nature of mobile lidar system 

and the asset of interest, the curbs along the road surface should be distinguished from others. In 

the testing results, there were no false positives showing on the road surface. Therefore, if the 

road surface can be classified in the point cloud, then curb-like objects away from the road can 

be easily identified and eliminated, yielding a more accurate curb ramp localization result. 

 

(a) An intersection where all four curb ramps are correctly identified. 
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(b) A missing curb ramp due to incomplete curb detection caused by low point density. 

 

(c) A falsely identified curb ramp due to parking blocks detected as curbs. 
Figure 4-2. Examples of the performance of the proposed approach in which blue and red points 

represent curbs and curb ramps, respectively. 
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CHAPTER 5 CONCLUSIONS 

This project proposed an automatic curb ramp localization approach for mobile lidar data. 

The proposed approach consists of three steps: ground filtering, curb detection, and curb ramp 

localization. The research team adopted Vo-SmoG ground filtering from the team’s previous work. 

The ground surface is modeled, and the curb line is detected on the basis of its elevation change 

and linearity. The the gap between two curb lines becomes a candidate curb ramp and is further 

screened on the basis of the width and alignment of the associated curb lines. The proposed 

approach was demonstrated to be effective and efficient through a test on a large mobile lidar data 

set. The recall, precision, and F-1 scores were 72.4 percent in terms of identifying the curb ramps 

from the point cloud data. The errors were further analyzed and are discussed. Given that the 

proposed approach results in a classified point cloud, in the future, the research team will leverage 

the approach to further classify and characterize more features for asset management and other 

applications.  
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